Q1.

	13	(a)	correct signal voltages(-1 each error or omission)B2 corresponding binary numbers(-1 each error or omission)B2		[4]
		(b)	signal changes at correct positions		[2]
		(c)	(use ADC and DAC with) larger number of bits M1 makes smaller 'step height' A1 sample more frequently M1 makes smaller 'step depth' A1		[4]
Q2.					
14	(a)	central conductor with outer screening		[2]
	(b)	e.g. greater bandwidth immune to e.m. interference radiates less e.m. power less cross-talk lower noise levels(1 each, max 3)	3	[3]
Q3.					
15			10 m \rightarrow 100 m worldwide more than 100 m less than 10 m line of sight <u>or</u> worldwide using satellites (-1 each error or omission)B5		[5]
Q4.					
	10	(a)	correct values of 2, 5, 10, 15 and 4 (-1 each error) graph drawn as a series of steps steps occurring at correct times	B2 M1 A1	[4]
		(b)	sample more frequently greater number of bits	B1 B1	[2]

Q5.

	10	(a)	correct values of 2, 5, 10, 15 and 4 (-1 each error) graph drawn as a series of steps steps occurring at correct times	B2 M1 A1	[4]
		(b)	sample more frequently greater number of bits	B1 B1	[2]
Q6.					
1	1 (a	a) (i) frequency of carrier wave varies in synchrony with <u>displacement</u> of information signal	M1 A1	[2]
		(ii	1. zero (accept constant)2. upper limit 530 kHzlower limit 470 kHz	B1 B1 B1	[1]
			changes upper limit → lower limit → upper limit at 8000 s ⁻¹	B1	[3]
	(I		g. more radio stations required / shorter range more complex electronics larger bandwidth required any two sensible suggestions, 1 each)	B2	[2]
Q7.					
12	? (a	ı) (i)	picking up of signal in one cable from a second (nearby) cable	M1 A1	[2]
		(ii)	random (unwanted) signal / power that masks / added to / interferes with / distorts transmitted signal (allow this mark in (i) or (ii))	B1 B1	[2]
	(b	P los	P is power at receiver, $0 = 10 \log(P / (6.5 \times 10^{-6}))$ $= 6.5 \times 10^{-3}$ W ss along cable = $10 \log(\{26 \times 10^{-3}\} / \{6.5 \times 10^{-3}\})$ = 6.0 dB = 6.0 / 0.2 = 30 km	C1 C1 C1 C1	[5]
		16	1941 - 0.0 / 0.2 - 00 Kill	~ 1	

Q8.

12	(a)) loss / reduction in power / energy / voltage/ amplitude (of the signal)								
	(b)	(i) attenuation = 1	25 × 7 = 875 dB		A1	[1]				
		(ii) 20 amplifiers gain = 20 × 43	= 860 dB		A1	[1]				
	(c)	gain = $10 \lg(P_1/P_2)$ overall gain = $-15 dB$ / attenuation is $15 dB$ $-15 = 10 \lg(P / 450)$ P = 14 mW								
Q9.										
13	(a)		r.f.) amplifier; demodulator; nverter; DAC; (a.f.) amplifier marks each							
		5 blocks in correct of	sion, deduct 1 mark)		B2 B2					
	(b)	signal received by (transferred to cellula	ase station with strongest signal requency	(1) (1) (1) (1) (1)	B4	4 [4]				
Q10										
11	(a)		wave <u>varies</u> (in synchrony) with signal <u>displacement</u> of signal		M1 A1	[2]				
	(b)	advantages e.g. (1 each, max 2) disadvantages e.g. (1 each, max 2)	less noise / less interference greater bandwidth / better quality short range / more transmitters / line of sight more complex circuitry greater expense		В4	[4]				

Q11.

12	(a)		ain / loss/dB = $10 \lg(P_1/P_2)$ $90 = 10 \lg(18 \times 10^3 / P_2)$	C1	
		or	$r - 190 = 10 \lg (18 \times 10^{-7} P_2)$ $r - 190 = 10 \lg P_2 / 18 \times 10^3)$ ower = 1.8×10^{-15} W	C1 A1	[3]
	(b)	(i)) 11 GHz / 12 GHz	B1	[1]
		(ii)	e.g. so that input signal to satellite will not be 'swamped' to avoid interference of uplink with / by downlink	B1	[1]
Q12	•				
12	(a)		nal becomes distorted / noisy nal loses power / energy / intensity / is attenuated	B1 B1	[2]
	(b)	(i)	either numbers involved are smaller / more manageable / cover wider range or calculations involve addition & subtraction rather than multiplication a		on [1]
		(ii)	25 = $10 \lg(P_{\min} / (6.1 \times 10^{-19}))$ minimum signal power = 1.93×10^{-16} W signal loss = $10 \lg(6.5 \times 10^{-3})/(1.93 \times 10^{-16})$ = $135 dB$ maximum cable length = $135 / 1.6$ = $85 \text{ km so no repeaters necessary}$	C1 C1 C1 C1 A1	[5]
Q13	•				
11	(a)		equency of carrier wave varies synchrony) with the displacement of the information signal	M1 A1	[2]
	(b)	(i)	5.0V	A1	[1]
		(ii)	640kHz	A1	[1]
		(iii)	560kHz	A1	[1]
		(iv)	7000 (condone unit)	A1	[1]

Q14.

12	(a)	e.g.	acts as 'return' for the signal shields inner core from noise / interference / cross-talk (any two sensible answers, 1 each, max 2)		B2	[2]
	(b)	e.g.	greater bandwidth less attenuation (per unit length) less noise / interference (any two sensible answers, 1 each, max 2)		B2	[2]
	(c)	atte	nuation is 2.4 dB nuation = $10 \lg(P_1/P_2)$ p = 1.7		C1 C1 A1	[3]
Q15.						
11	l (a	e.ç e.ç	g. unreliable communication because ion layers vary in height / density g. cannot carry all information required bandwidth too narrow g. coverage limited reception poor in hilly areas my two sensible suggestions, M1 & A1 for each, max 4)	(M1) (A1) (M1) (A1) (M1) (A1)		[4]
	(b		nal must be amplified (greatly) before transmission back l <u>ink</u> signal would be swamped by <u>downlink</u> signal	to Earth	B1 B1	[2]
Q16.						
12	(a)	(i)	ratio / dB = $10 \lg(P_1 / P_2)$ 24 = $10 \lg(P_1 / \{5.6 \times 10^{-19}\})$ $P_1 = 1.4 \times 10^{-16} \text{ W}$		C1 C1 A1	[3]
		(ii)	attenuation per unit length = $1 / L \times 10 \lg(P_1 / P_2)$ $1.9 = 1 / L \times 10 \lg({3.5 \times 10^{-3}}/{1.4 \times 10^{-16}})$ L = 1 km or		C1 C1 A1	[3]
			attenuation = $10 \log({3.5 \times 10^{-3}}/{5.6 \times 10^{-19}})$ = $158 dB$ attenuation along fibre = $(158 - 24)$ L = (158 - 24) / 1.9 = 71 km	(C1) (C1) (A1)		

(b) less attenuation (per unit length) / longer uninterrupted length of fibre

B1

[1]

Q17.

13	(a)	(i)	no interference (between signals) near boundaries (of cells)	B1	[1]
	,		* ***		
		(11)	for large area, signal strength would have to be greater and this could be hazardous to health	B1	[1]
	(b)		obile phone is sending out an (identifying) signal	M1	
			mputer/cellular exchange <u>continuously</u> selects cell/base station the strongest signal	A1	
			mputer/cellular exchange allocates (carrier) frequency (and slot)	A1	[3]
∩10					
Q18	•				
11	(a)	(i)	loss of (signal) power	B1	[1]
		(ii)	unwanted power (on signal)	M1	
		()	that is random	A1	[2]
	(b)		digital, only the 'high' and the 'low' / 1 and 0 are necessary	M1	ro
		var	riation between 'highs' and 'lows' caused by noise not required	A1	[2]
	(6)	att	enuation = $10 \lg(P_2 / P_1)$	C1	
	(0)		her 195 = 10lg({2.4 × 10 ³ } / P)		
		or D -	$-195 = 10 \log(P / 2.4 \times 10^3)$ = 7.6 × 10 ⁻¹⁷ W	C1 A1	[3]
			- 7.0 × 10 · W	A.	[0]
040					
Q19	•				
12	(a)	(i)	modulator	B1	[1]
				D4	59.7
		(ii)	serial-to-parallel converter (accept series-to-parallel converter)	B1	[1]
	(h)	(i)	enables one aerial to be used for transmission and receipt of signals	A1	[1]
	(1)	(1)	The state of the s		Ľij
		(ii)	all bits for one number arrive at one time bits are sent out one after another	B1 B1	[2]
				- 15	[-]

Q20.

11 (a) (i) amplitude of the carrier wave varies M1 [2] (in synchrony) with the displacement of the information signal A₁ (ii) e.g. more than one radio station can operate in same region/less interference enables shorter aerial increased range/less power required/less attenuation less distortion (any two sensible answers, 1 each) B2 [2] (b) (i) frequency = 909kHz C₁ wavelength = $(3.0 \times 10^8) / (909 \times 10^3)$ $= 330 \, \text{m}$ A₁ [2] (ii) bandwidth = 18 kHz A₁ [1] (iii) frequency = 9000 Hz A1 [1]

Q21.

12 (a) for received signal,
$$28 = 10 \lg(P / \{0.36 \times 10^{-6}\})$$
 C1 A1 [2]
(b) loss in fibre $= 10 \lg(\{9.8 \times 10^{-3}\} / \{2.27 \times 10^{-4}\})$ C1 A1 [2]
(c) attenuation per unit length $= 16 / 85$ A1 [1]

A1 [1]

Q22.

12	(a)									e num ong th			missio	on lin	e)			B1 B1	[2]
	(b)	(i)	011	1														A1	[1]
		(ii)	011	0														A1	[1]
	(c)	leve	ls sh	nowr	1														
			t	0	0.2	0.4	0.6	8.0	1.0	1.2									
				0	8	7	15	6	5	8									
		com	ect l	oasio	shap taying	cons	graph stant	i.e. s durinç	corr	of ste ect tir e sho	me i		rvals					A2 M1 A1	[4]
	(d)	incr	easi	ng s	ampli		quen	cy re	duces	heigh s step		oth /	/ width	1				M1 M1 A1	[3]
Q23.	•																		
10	(a)	(i)	am	plitud	de (m	odulat	ed) (allow	'AM')								B1	[1]	l
		(ii)	can	rier (freque	ency /	wave	e)									B1	[1]	l
		(iii)	side	eban	d (fre	quenc	y)										B1	[1]	
	(b)	10	kHz														B1	[1]	ĺ
	(c)	cor	rect	perio	d for	modu	lating	wave	form	(200)	μs)						A1		I
Q24.	•																		
11	(a)	so	that	num	ber o	es car f hand sible e	dsets e.g. U	possi	ble is sed	incre	eou	d (E	withou 31) 31)	ut int	erferen	ce)		.B1 .B1	[2]
	(b)	con	nmu nput	nicat er se	ted by elects	base	station station	ons to	cor h stro	mpute ingest	er at) t sig) ex nal	chang	ge				.A1 .B1	[4]

Q25.

9	(a)		as less attenuation (per unit length) er (repeater) amplifiers / longer <u>uninterrupted</u> length	B1 B1	[2
	(b)	eithe or	er limited range (so) cells do not overlap (appreciably) short wavelength so convenient length aerial (on mobile phone) (B1)	B1 B1	[2
	(c)		e bandwidth / large information carrying capacity rent so that uplink signal not swamped by downlink	B1 B1	[2
Q26.					
12	(a)	so the e.g.	signal can be regenerated nat there is minimal noise extra data can be added nat signal can be checked for errors two, sensible suggestions, M1 + A1, max 4)	A1 M1	[4]
	(b)	(i)	1101	B1	[1]
		(ii)	5	B1	[1]
	(c)		block X: serial-to parallelblock Y: DAC / digital-to-analogue (converter)		[2]
		*	takes the simultaneous / all bits of a numberand transmits them one after another / down a single line		[2]
	(d)	so the	ease number of bits in digital number at each sampling	A1 M1	[4]
				[Tatal	4.41

[Total: 14]

Q27.

11	(a)	am	plitude modulation(allow AM)B1	[1]
	(b)	(i)	frequency = 1 / period	
		(ii)	frequency = 10 kHz	[1]
	(c)	(i)	vertical line at 100 kHz	1
		(ii)	20 kHzB1	[1]
			от]	tal: 8]
Q28.				
12	(a)	(i)	base stations	[1]
		(ii)	cellular exchange	[1]
	(b)	call com sele	e station / X sends / receives signal to / from handset	[5]
		40.80	[Total:	

Q29.

11 (a) (i) unwanted random power / signal / energy B1 [1]

(ii) loss of (signal) power / energy B1 [1]

(b) (i) either signal-to-noise ratio at mic. =
$$10 \lg (P_2/P_1)$$
 C1 = $10 \lg (\{2.9 \times 10^{-6}\}/\{3.4 \times 10^{-9}\})$ A1 maximum length = $(29 - 24)/12$ C1 C1 = $0.42 \, \text{km} = 420 \, \text{m}$ A1 [4]

or signal-to-noise ratio at receiver = $10 \lg (P_2/P_1)$ (C1) at receiver, $24 = 10 \lg (P/\{3.4 \times 10^{-9}\})$ (A1) power loss in cables = $10 \lg (\{2.9 \times 10^{-6}\}/\{8.54 \times 10^{-7}\})$ (C1) = $5.3 \, \text{dB}$ length = $5.3/12 \, \text{km}$ = $440 \, \text{m}$ (A1)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	41

© UCLES 2010

(ii) use an amplifier M1
coupled to the microphone A1 [2]
(repeater amplifiers scores no mark)

Q30.

12 (a) (carrier wave) transmitted from Earth to satellite (1) satellite receives greatly attenuated signal (1) signal amplified and transmitted back to Earth **B1** at a different (carrier) frequency **B1** different frequencies prevent swamping of uplink signal (1) e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) (1) (two B1 marks plus any two other for additional physics) B2 [4] M1 e.g. much shorter time delay (b) advantage: because orbits are much lower A1 e.g. whole Earth may be covered (M1)in several orbits / with network (A1) either must be tracked disadvantage: e.g. limited use in any one orbit M1 more satellites required for continuous operation A1 [4]

12	(a)	(i)	 signal has same variation (with time) as the data consists of (a series of) 'highs' and 'lows' 	B1 B1	
			either analogue is continuously variable (between limits)or digital has no intermediate values	B1	[3]
		(ii)	e.g. can be regenerated / noise can be eliminated extra data can be added to check / correct transmitted signal (any two reasonable suggestions, 1 each)	B2	[2]
	(b)	(i)	analogue signal is sampled at (regular time) intervals sampled signal is converted into a binary number	B1 B1	[2]
		(ii)	one channel is required for each bit (of the digital number)	B1	[1]
Q32.			g. large bandwidth/carries more information		
10	(a)) e.(low attenuation of signal low cost smaller diameter, easier handling, easier storage, less weight high security/no crosstalk		
		(al	low noise/no EM interference low any four sensible suggestions, 1 each, max 4)	B4	[4]
	(b) (i)	infra-red	B1	[1]
		(ii)	lower attenuation than for visible light	B1	[1]
	(c)	(i)	gain/dB = $10 \lg(P_2/P_1)$ 26 = $10 \lg(P_2/9.3 \times 10^{-6})$	C1	
			$P_2 = 3.7 \times 10^{-3} \mathrm{W}$	A1	[2]
		(ii)	power loss along fibre = $30 \times 0.2 = 6.0 \text{ dB}$ either 6 = $10 \lg(P/3.7 \times 10^{-3}) \text{ or } 6 \text{ dB} = 4 \times 3.7 \times 10^{-3}$ or $32 = 10 \lg(P/9.3 \times 10^{-6})$	C1	
			input power = $1.5 \times 10^{-2} \text{ W}$	A1	[2]

Q33.

11 (a) (i) switch so that one aerial can be used for transmission and reception	M1 A1	[2]
(ii) tuning circuit to select (one) carrier frequency (and reject others)	M1 A1	[2]
(iii) analogue-to-digital converter/ADC converts microphone output to a digital signal	M1 A1	[2]
(iv	 (a.f.) amplifier (not r.f. amplifier) to increase (power of) signal to drive the loudspeaker 	M1 A1	[2]
	.g. short aerial so easy to handle short range so less interference between base stations larger waveband so more carrier frequencies any two sensible suggestions, 1 each, max 2)	B2	[2]
Q34.			
(b)	e.g. carrier frequencies can be re-used (without interference) so increased number of handsets can be used e.g. lower power transmitters so less interference e.g. UHF used so must be line-of-sight/short handset aerial (any two sensible suggestions with explanation, max 4) computer at cellular exchange monitors the signal power relayed from several base stations switches call to base station with strongest signal	(M1) (A1) (M1) (M1) (M1) (A1) B4 B1 B1 B1	[4] [4]
Q35.			
11 (a)	e.g. noise can be eliminated/filtered/signal can be regenerated extra bits can be added to check for errors multiplexing possible digital circuits are more reliable/cheaper data can be encrypted for security any sensible advantages, 1 each, max. 3	В3	[3]
(b)	(i) 1. higher frequencies can be reproduced	B1	[1]
	2. smaller changes in loudness/amplitude can be detected	B1	[1]
	(ii) bit rate = $44.1 \times 10^3 \times 16$ = $7.06 \times 10^5 \text{ s}^{-1}$	C1	
	number = $7.06 \times 10^6 \times 340$ = 2.4×10^8	A1	[2]

12 (a) (i) signal in one wire (pair) is picked up by a neighbouring wire (pair)

(ii) outer of coaxial cable is earthed outer shields the core from noise/external signals

B1 [1]

© Cambridge International Examinations 2012

Mark Scheme	Syllabus	Paper	
GCE AS/A LEVEL – October/November 2012	9702	41	
on per unit length = $1/L \times 10 \lg(P_2/P_1)$		C1	
$= 1.2 \times 10^{-5} \text{W}$		C1	
= 24 dB		C1	
$= 17 dB km^{-1}$		A1	[4]
	GCE AS/A LEVEL – October/November 2012 on per unit length = $1/L \times 10 \lg(P_2/P_1)$ ower at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$ = 1.2×10^{-5} W on in wire pair = $10 \lg(\{3.0 \times 10^{-3}\}/\{1.2 \times 10^{-5}\})$ = $24 dB$ on per unit length = $24/1.4$	GCE AS/A LEVEL – October/November 2012 9702 on per unit length = $1/L \times 10 \lg(P_2/P_1)$ ower at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$ = 1.2×10^{-5} W on in wire pair = $10 \lg(\{3.0 \times 10^{-3}\}/\{1.2 \times 10^{-5}\})$ = $24 dB$ on per unit length = $24/1.4$ = $17 dB km^{-1}$	GCE AS/A LEVEL – October/November 2012 9702 41 on per unit length = $1/L \times 10 \lg(P_2/P_1)$ C1 ower at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$

Q37.

11 (a) high frequency wave B1
the amplitude or the frequency is varied the variation represents the information signal /
in synchrony with (the displacement of) the information signal. A1 [3]

© Cambridge International Examinations 2012

CCE AC/A LEVEL October/Nevember 2012 0702	s Paper	Syllabus	Page 6
GCE AS/A LEVEL – October/November 2012 9702	43	9702	

(b) e.g. shorter aerial required
longer transmission range / lower transmitter power / less attenuation
allows more than one station in a region
less distortion
(allow any three sensible suggestions, 1 mark each)

B3 [3]

Q38.

```
12 (a) (i) e.g. linking a (land) telephone to the (local) exchange
                                                                                                              B1
                                                                                                                     [1]
            (ii) e.g. connecting an aerial to a television
                                                                                                              B1
                                                                                                                     [1]
           (iii) e.g. linking a ground station to a satellite
                                                                                                              B1
                                                                                                                     [1]
       (b) (i) attenuation = 10 \lg (P_2/P_1)
                                                                                                              C<sub>1</sub>
                 total attenuation = 2.1 × 40 (= 84 dB)
                                                                                                              C<sub>1</sub>
                 84 = 10 \lg ({450 \times 10^{-3}} / P)
                 P = 1.8 \times 10^{-9} \text{ W}
                                                                                                              A1
                                                                                                                     [3]
                 (answer 1.1 ×108 W scores 1 mark only)
            (ii) maximum attenuation = 10 \log (\{450 \times 10^{-3}\} / \{7.2 \times 10^{-11}\})
                                           = 98 \, dB
                                                                                                              C<sub>1</sub>
                 maximum length = 98/2.1
                                     =47km
                                                                                                              A1
                                                                                                                     [2]
Q39.
   11 (a) left-hand bit underlined
                                                                                                          B<sub>1</sub>
                                                                                                                     [1]
        (b) 1010, 1110, 1111, 1010, 1001
             (5 correct scores 2, 4 correct scores 1)
                                                                                                          A2
                                                                                                                     [2]
        (c) significant changes in detail of V between samplings
                                                                                                          M1
             so frequency too low
                                                                                                          A<sub>1</sub>
                                                                                                                     [2]
Q40.
  12 (a) e.g. logarithm provides a smaller number
                 gain of amplifiers is series found by addition, (not multiplication)
            (any sensible suggestion)
                                                                                                           B1
                                                                                                                      [1]
       (b) (i) optic fibre
                                                                                                           B1
                                                                                                                      [1]
            (ii) attenuation/dB = 10 \lg(P_2/P_1)
                                                                                                           C<sub>1</sub>
                                   = 10 \log((6.5 \times 10^{-3})/(1.5 \times 10^{-15}))
                                                                                                           C<sub>1</sub>
                                   = 126
                 length = 126 / 1.8
                         = 70 \text{ km}
                                                                                                           A1
                                                                                                                      [3]
```

Q41.

11	(a)	, ,	either series of 'highs' and 'lows' <i>or</i> two discrete values with no intermediate values	M1 A1	[2]
		(ii)	e.g. noise can be eliminated (NOT 'no noise') signal can be regenerated addition of extra data to check for errors larger data carrying capacity cheaper circuits			
			more reliable circuits (any three, 1 each)	B3	[3]
(b) (i)	1.	amplifier	B	I	[1]
		2.	digital-to-analogue converter (allow DAC)	B	I	[1]
	(ii)		tput of ADC is number of digits all at one time rallel-to-serial sends digits one after another	B1		[2]
Q42	2.					
12	(a)	e.g.	no / little ionospheric reflection large information carrying capacity (any two sensible suggestions, 1 each)	В	2	[2]
	(b)		vents (very) low power signal received at satellite ng swamped by high-power transmitted signal	M A	i i	[2]
	(c)	atte	muation/dB = $10 \lg(P_2/P_1)$ $185 = 10 \lg({3.1 \times 10^3}/P)$ $P = 9.8 \times 10^{-16} \text{ W}$	C C A	1	[3]
Q43	3.					
13	(a)		noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable greater rate of transfer of data (1 each, max 2)		В2	[2]
	(b)		eives bits all at one time smits the bits one after another		B1 B1	[2]
	(c)		apling frequency must be higher than/(at least) twice frequency to be sample	ed	М1	
		or	er higher (range of) frequencies reproduced on the disc lower (range of) frequencies on phone		A1	
		or	er higher quality (of sound) on disc high quality (of sound) not required for phone		В1	[3]

14 (a) reduction in power (allow intensity/amplitude) **B1** [1] (b) (i) attenuation = 2.4×30 =72 dBA1 [1] (ii) gain/attenuation/dB = 10 $\lg(P_2/P_1)$ C₁ 72 = $10 \lg(P_{\text{IN}}/P_{\text{OUT}})$ or $-72 = 10 \lg(P_{\text{OUT}}/P_{\text{IN}})$ ratio = 1.6×10^7 C1 A1 [3] (c) e.g. enables smaller/more manageable numbers to be used e.g. gains in dB for series amplifiers are added, not multiplied **B1** [1] Q45. 12 (a) (i) satellite is in equatorial orbit **B1** travelling from west to east **B1**

© Cambridge International Examinations 2014

period of 24 hours / 1 day

www.maxpapers.com

B1

[3]

Page 6	6	Mark Scheme	Syllabus	Paper	
75" 1	2	GCE A LEVEL – May/June 2014	9702	42	
(ii)	either or preven	uplink signal is highly attenuated signal is highly amplified (before transmission ts downlink signal swamping the uplink signal	n) as downlink signal	B1 B1	[2]
opt	ic fibre I	gnal is same order of magnitude in both systems ink (much) shorter than via satellite using optic fibre is less		B1 M1 A1	[3]

Q46.

12	(a)	(i)	$\hbox{e.g. satellite $\underline{$\operatorname{communication}}$, mobile phones, line of sight communication, wifi}\\$	B1	[1]
		(ii)	e.g. connection of TV to aerial, loudspeaker, microphone (if clearly identified)	B1	[1]
	(iii)	e.g. a.f. amplifier to loudspeaker, landline for phone	B1	[1]
	(b)	(i)	attenuation/dB = $10 \lg (P_2/P_1)$ -190 = $10 \lg (P_2/3.1)$	C1	
			$P_2 = 3.1 \times 10^{-19} \text{kW}$	A1	[2]
		(ii)	signal is amplified frequency is changed to prevent swamping of up-link signal by down-link (signal)	M1 M1 A1	[3]
Q47.	•				
13	(a)	or	ther for transmission and reception of signal switching between transmitted and received signals ther so that one aerial may be used	M1	
			so that transmission and reception can occur in quick succession	A1	[2]
	(b)		ves large signal for one (input) frequency nd) rejects/very small signal for all other frequencies	M1 A1	[2]

Q48.

12 (a) analogue: continuously variable digital: two/distinct levels only or 1 s and 0 s or highs and lows

B1 B1 [2]

(b) (i) 5 A1 [1]

(ii) 1101

A1 [1]

© Cambridge International Examinations 2014

Page 6	Mark Scheme		Pape	r
	Cambridge International AS/A Level – October/November 2014	9702	43	
(c)		B1 B1 B1	[3]	

12	(a)	analogue: continuously variable digital: two/distinct levels only <i>or</i> 1 s and 0 s <i>or</i> highs and lows	B1 B1	[2]
	(b)	(i) 5	A1	[1]
		(ii) 1101	A1	[1]

© Cambridge International Examinations 2014

Page 6	age 6 Mark Scheme		Pape	r
	Cambridge International AS/A Level – October/November 2014	9702	43	
S	preater number of voltage/signal levels smaller step heights in reproduced signal smaller voltage/signal changes can be seen		B1 B1 B1	[3]